
Journal of Computational Physics 197 (2004) 418–459

www.elsevier.com/locate/jcp
Space–time coupled spectral/hp least-squares finite
element formulation for the incompressible

Navier–Stokes equations

J.P. Pontaza *, J.N. Reddy

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Received 18 September 2002; received in revised form 29 October 2003; accepted 28 November 2003

Available online 22 January 2004
Abstract

We consider least-squares finite element models for the numerical solution of the non-stationary Navier–Stokes

equations governing viscous incompressible fluid flows. The paper presents a formulation where the effects of space and

time are coupled, resulting in a true space–time least-squares minimization procedure, as opposed to a space–time

decoupled formulation where a least-squares minimization procedure is performed in space at each time step. The

formulation is first presented for the linear advection-diffusion equation and then extended to the Navier–Stokes

equations. The formulation has no time step stability restrictions and is spectrally accurate in both space and time. To

allow the use of practical C0 element expansions in the resulting finite element model, the Navier–Stokes equations are

expressed as an equivalent set of first-order equations by introducing vorticity as an additional independent variable

and the least-squares method is used to develop the finite element model of the governing equations. High-order ele-

ment expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton�s
method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a

fully coupled manner by a preconditioned conjugate gradient method in matrix-free form. Spectral convergence of the

L2 least-squares functional and L2 error norms in space–time is verified using a smooth solution to the two-dimensional

non-stationary incompressible Navier–Stokes equations. Numerical results are presented for impulsively started lid-

driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow around a

circular cylinder; the results demonstrate the predictive capability and robustness of the proposed formulation. Even

though the space–time coupled formulation is emphasized, we also present the formulation and numerical results for

least-squares space–time decoupled finite element models. The numerical results show that the space–time coupled

formulation has superior predictive capabilities for flows demanding high space–time resolution, exemplified here by the

transient flow over a backward-facing step.
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1. Introduction

In previous work [1], we presented a least-squares finite element formulation for the stationary Navier–
Stokes equations where the discrete model was developed using high-order element nodal/modal expan-

sions; here we extend the formulation to the non-stationary case using a space–time coupled least-squares

formulation.

Traditionally, the weak form Galerkin finite element formulation of time-dependent problems involves

two steps [2,3]: Spatial approximation, where we assume that the solution is separable into functions of

space only and time only; the spatial finite element model is developed using the procedures of static

problems, while carrying all time dependent terms in the formulation. This step results in a semidiscrete

system of ordinary differential equations in time for the element degrees of freedom. Temporal

approximation, where the semidiscrete model is further approximated in time, using finite difference

formulae for the time derivatives. This two-step procedure provides a good approximation to the time-

dependent evolution of the problem, provided the time step is small enough to meet stability and

accuracy criteria.

The traditional least-squares finite element formulation of time-dependent problems also involves two

steps [4,5]: Temporal approximation, where the temporal operator is directly approximated and replaced by

finite difference formulae. In contrast with the weak form Galerkin formulation of time-dependent prob-

lems, the temporal approximation is performed first and yields a modified governing equation or sets of
governing equations if a multi-stage temporal approximation is used. Spatial approximation, where the

(spatial) least-squares functional, defined as the sum of the squares of the modified governing equation(s)

residuals measured in suitable norms of Hilbert spaces, is minimized. In the time-marching procedure, the

space integral is minimized at each time step. Both formulations described above are space–time decoupled

formulations.

Least-squares finite element formulations offer several theoretical and computational advantages over

the weak form Galerkin formulation for the incompressible Navier–Stokes equations (see, e.g., [6,7]). In

particular, circumventing the inf–sup condition, thus allowing approximation spaces for velocities and
pressure to be chosen independently, including the choice of equal-order interpolation. Furthermore, the

resulting algebraic problem will have a symmetric positive definite (SPD) coefficient matrix, which can be

solved by using robust and fast iterative methods, such as preconditioned conjugate gradient (PCG)

methods.

However, unlike the weak form Galerkin formulation where regularity requirements of the finite element

spaces are weakened by the integration by parts step, least-squares based formulations have associated with

them the requirement of higher regularity of the finite element spaces – dictated by the differentiability

requirements of the governing equation(s) under consideration. To reduce the higher regularity require-
ments, the governing equation(s) are first transformed into an equivalent lower order system by introducing

additional independent variables and then formulating the least-squares model based on the equivalent

lower order system. Thus, to allow the use of practical C0 nodal/modal expansions in the resulting finite

element model, the Navier–Stokes equations are first recast as an equivalent first-order system and the

least-squares functional defined in terms of L2 norms only [1,4,6–9].

First-order systems that allow the construction of a L2 least-squares functional that is H 1-norm equiv-

alent are commonly referred to as H 1-coercive formulations. Such systems yield optimal error estimates

with respect to the H 1-norm for all variables [7] and ensure the optimality of multiplicative and additive
multigrid methods [8], which could be used either as a solver or a preconditioner for the conjugate gradient

method. However, not all L2 least-squares formulations are H 1-coercive. Such formulations are termed non-

equivalent formulations, because the L2 least-squares functional does not define an equivalent norm in H 1.

Nevertheless, a non-equivalent formulation does not imply that the method is not optimal. It simply means

that the optimality of the resulting method cannot be established a priori using standard elliptic theory.
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In the context of least-squares finite element formulations for the Navier–Stokes equations, pre-

dominantly low order nodal expansions have been used to develop the discrete finite element model (see

[4] and references therein). When the L2 least-squares functional is not H 1-norm equivalent (defining a
non-equivalent formulation), low order nodal expansions tend to lock and non-standard least-squares

procedures such as collocation must be used to obtain acceptable numerical results. This is the pre-

ferred procedure in the work presented by Jiang [4] and Tang et al. [5], although they refer to the

collocation solution as a reduced integration solution. It is important to note that reduced integration

techniques will only result in a collocation solution if a strict balance between the number of collo-

cation points and total number of degrees of freedom is satisfied. Thus, in general, blind application of

reduced integration techniques will not result in a collocation solution. In addition, the least-squares

functional cannot be used to measure the quality of the solution as it identically vanishes at the col-
location points.

Even though a non-equivalent formulation departs from the ideal mathematical setting, it does not lead

to disastrous results; as a violation of the inf–sup condition would, in a mixed weak form Galerkin for-

mulation. As shown in our previous work [1] and in the work of Proot et al. [9], when high-order element

nodal/modal expansions are used to construct the discrete finite element model, non-equivalent formulations

are able to recover optimal properties. For smooth solutions, the L2 least-squares functional decays ex-

ponentially fast as the element expansion order (p-level) is increased.
We realize that a least-squares space–time decoupled formulation is not desirable as it does not lend itself

naturally to p-type refinement in time. Furthermore, a space–time decoupled formulation only applies least-

squares variational principles in space and therefore cannot represent a true error minimization procedure

of the time-dependent problem which describes an evolution in space–time domain. This provided the

motivation to develop a space–time coupled least-squares formulation, which represents a true minimi-

zation procedure in space–time domain.

Invariably, we as analysts would like to simulate and study the time evolution of an initial value problem

for large values of time. This would require a space–time mesh with a large number of elements in time. The

size of the resulting set of assembled algebraic equations could be large and prohibitively expensive in terms
of available computer memory and non-optimal in terms of CPU solve time. To alleviate the drawbacks, we

adopt a time-stepping procedure in which the solution is obtained for space–time strips in a sequential

manner. The initial conditions for the current space–time strip are obtained from the latest space plane

from the previous space–time strip. Hence, for each space–time strip we solve a true initial boundary value

problem.

Having introduced a basis in the time domain allows us to represent the time evolution with arbitrary

accuracy, which eliminates the question of stability of the time-stepping procedure. This means that we can

choose the length (Dt) of the space–time strip as large as we wish, the only issue is accuracy; which we can
control by hp refinements in time.

Note that a two-dimensional time-dependent problem needs a three-dimensional space–time mesh. Even

after adopting the time-stepping procedure, storage of the assembled stiffness matrix in banded or in

compressed sparse row/column format is prohibitively expensive in terms of computer memory. We

therefore resort to matrix-free techniques, also known as element-by-element solution algorithms.

Bell and Surana [10,11] presented numerical results for the non-stationary incompressible Navier–Stokes

equations. They used the stress based first-order system and a space–time coupled least-squares formulation

with a modal basis derived from equispaced Lagrange polynomials. They presented time history results for
impulsively started Couette flow and the lid-driven cavity flow problem. In the present study we consider

the numerical solution of the non-stationary incompressible Navier–Stokes equations using a vorticity

based first-order system. We make use of the nodal and modal expansions for quadrilateral elements due to

Warburton et al. [12,13]. We present time history results for flows which have a true steady-state solution

and a periodic steady-state solution.
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The paper is organized as follows. As a preliminary step to the Navier–Stokes equations, in Section

2, we present the space–time coupled least-squares formulation for the non-stationary advection-dif-

fusion equation. We give details on the finite element model and the nodal/modal expansions used
throughout the paper, followed by a discussion regarding the accuracy, stability, and computational

cost of space–time coupled and decoupled formulations. Numerical results for the pure advection of a

cosine hill in a rotating flow field are presented to conclude this section. In Section 3 we present the

space–time coupled least-squares formulation for the non-stationary incompressible Navier–Stokes

equations. The Navier–Stokes equations are expressed as an equivalent set of first-order equations by

introducing vorticity as an additional independent variable and the least-squares method is used to

develop the finite element model. Numerical results using the proposed formulation are presented in

Section 4. Exponentially fast decay (spectral convergence) of the L2 least-squares functional and L2

error norms in space–time is verified using a smooth solution to the two-dimensional non-stationary

incompressible Navier–Stokes equations. We present numerical results for impulsively started lid-driven

cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow past

a circular cylinder. Cost metrics are presented for each of the benchmark problems to show the per-

formance of the iterative solver. Comparisons between space–time coupled and decoupled formulations,

in terms of predictive capabilities and cost, are presented for the benchmarks problems of transient

flow over a backward-facing step and flow past a circular cylinder. In Section 5 we give concluding

remarks.
2. The advection-diffusion equation

Let �X be the closure of an open bounded region X in Rn, where n ¼ 2 or 3 represents the number of space

dimensions, and x ¼ ðx1; . . . ; xnÞ ¼ ðx; y; zÞ be a point in �X ¼ X [ oX, where oX ¼ C is the boundary of X.
We consider the solution of the non-stationary linear advection-diffusion equation in dimensionless form,

which can be stated as follows:
Find /ðx; tÞ such that

o/
ot

þ u � rð Þ/� 1

Pe
r2/ ¼ f in X� ð0; s�; ð1Þ

/ðx; 0Þ ¼ 0/ðxÞ in X; ð2Þ

/ ¼ /s on C/ � ð0; s�; ð3Þ

n̂ � r/ ¼ qsn on Cq � ð0; s�; ð4Þ

where C ¼ C/ [ Cq and C/ \ Cq ¼ ;, s is a real number (time) > 0, Pe is the Peclet number, u is the pre-

scribed velocity field, f is the source term, n̂ is the outward unit normal on the boundary of X, /s is the

prescribed value of / on the boundary C/, qsn is the prescribed normal flux on the boundary Cq, and in Eq.

(2) the initial conditions are given.

Although direct application of least-squares variational principles to the advection-diffusion equa-
tion is possible it will result in an impractical least-squares finite element model as we would be

required to work with continuously differentiable (C1-continuous) finite element spaces. We proceed

instead by first replacing the advection-diffusion problem, Eqs. (1)–(4) with its first-order system

equivalent.
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Find /ðx; tÞ and qðx; tÞ such that

o/
ot

þ u � rð Þ/� 1

Pe
r � q ¼ f in X� ð0; s�; ð5Þ

r/� q ¼ 0 in X� ð0; s�; ð6Þ

r � q ¼ 0 in X� ð0; s�; ð7Þ

/ðx; 0Þ ¼ 0/ðxÞ in X; ð8Þ

/ ¼ /s on C/ � ð0; s�; ð9Þ

n̂ � q ¼ qsn on Cq � ð0; s�; ð10Þ

where q is a vector valued function whose components are the fluxes of /, defined in Eq. (6), and Eq. (7) is a

curl constraint to ensure H 1 coercivity of the system [7].

A least-squares finite element model, where the least-squares functional is defined in terms of L2 norms
only, and is based on the equivalent first-order system, Eqs. (5)–(7), allows the use of practical C0-con-

tinuous element expansions. The reduction in regularity requirements of the element expansions across

inter-element boundaries came at the price of introducing additional independent variables, sometimes

termed auxiliary variables. The additional variables imply an increase in cost, but can be argued to be

beneficial as they may represent physically meaningful variables, fluxes in this case.

2.1. L2 least-squares formulation

For sP 0, we use the standard notation and definition for the Sobolev spaces HsðXÞ and HsðCÞ with

corresponding inner products denoted by ð�; �Þs;X and ð�; �Þs;C and norms by k � ks;X and k � ks;C, respectively.
Whenever there is no chance of ambiguity, themeasuresX andCwill be omitted from inner product and norm

designations. We denote the L2ðXÞ and L2ðCÞ inner products by ð�; �Þ and ð�; �ÞC, respectively. By HsðXÞ we
denote the product space ½HsðXÞ�n.We denote byH 1

0 ðXÞ the space consisting ofH 1ðXÞ functions that vanish on
the boundary C and by �L2ðXÞ the space of all square integrable functions with zero mean with respect to X.

The L2 least-squares functional associated with the equivalent first order system of the advection-dif-

fusion problem is

J /; q; fð Þ ¼ 1

2

o/
ot

����
 

þ u � rð Þ/� 1

Pe
r � q� f

����
2

0;X�ð0;s�
þ kr/� qk20;X�ð0;s� þ kr � qk20;X�ð0;s�

!
; ð11Þ

where k � k0;X�ð0;s� denotes the L2 norm of the enclosed quantity in space–time, i.e.,

kuk20;X�ð0;s� ¼
Z s

0

Z
X
juj2 dXdt: ð12Þ

Considering homogeneous boundary data and denoting the space–time domain by K ¼ �X� ð0; s�, the least-
squares principle for functional (11) can be stated as

Find ð/; qÞ 2 X, /ðx; 0Þ ¼ 0/ðxÞ such that for all ðw; rÞ 2 X

J /; q; fð Þ6J w; r; fð Þ; ð13Þ

where we use the space
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X ¼ /; qð Þ 2 H 1ðKÞ
n

�H1ðKÞ /jC/

��� ¼ 0; n̂ � qjCq
¼ 0
o
:

It is easy to see that the Euler–Lagrange equation for this minimization problem is given by the following

variational problem [14]:

Find ð/; qÞ 2 X, /ðx; 0Þ ¼ 0/ðxÞ such that for all ðw; rÞ 2 X

B /; qð Þ; w; rð Þð Þ ¼ F w; rð Þð Þ; ð14Þ

where B is the symmetric form,

B /; uð Þ; w; rð Þð Þ ¼
Z s

0

Z
X

o/
ot

�
þ u � rð Þ/� 1

Pe
r � q

�
ow
ot

�
þ u � rð Þw� 1

Pe
r � r

�
dXdt

þ
Z s

0

Z
X

r/ð � qÞ � rwð � rÞdXdt þ
Z s

0

Z
X

rð � qÞ � rð � rÞdXdt

and F the functional,

F w; rð Þð Þ ¼
Z s

0

Z
X
f

ow
ot

�
þ u � rð Þw� 1

Pe
r � r

�
dXdt:
2.2. Finite element model

The finite element model is obtained by either restricting (14) to the finite dimensional subspace Xhp of

the infinite dimensional space X, or equivalently by minimizing (11) with respect to the chosen approxi-

mating spaces. Then the space–time coupled least-squares discrete finite element model for the advection-

diffusion equation is given by the following discrete variational problem:

Find ð/hp; qhpÞ 2 Xhp, /
hpðx; 0Þ ¼ 0/ðxÞ such that for all ðwhp; rhpÞ 2 Xhp

B /hp; qhp
� �

; whp; qhp
� �� �

¼ F whp; rhp
� �� �

: ð15Þ

We proceed to define a discrete problem by choosing appropriate finite element subspaces for / and

each of the components of the vector valued function q ¼ ðqx; qy ; qzÞ. There are no restrictive com-

patibility conditions on the discrete spaces, so we choose the same finite element subspace for each
of the primary variables. The only requirement on the approximating spaces is that we choose con-

tinuous piecewise polynomials that are at least bi-linear (in two dimensions) or tri-linear (in three

dimensions).

We consider the two-dimensional case. As pointed out earlier, in a space–time coupled formulation, a

time-dependent two-dimensional problem must be treated as a three-dimensional problem in space–time

domain. Let the space–time domain �X� ð0; s� be denoted by �K and let Ph ¼ fQg be a family of brick finite

elements �Ke that make up the connected model �Kh in space–time.

We map �Ke to a bi-unit cube K̂e ¼ ½�1; 1� � ½�1; 1� � ½�1; 1�, where n ¼ ðn1; n2; n3Þ ¼ ðn; g; cÞ is a point in
K̂e. Over a typical element K̂e we approximate / by the expression

/ðn; g; cÞ � /hpðn; g; cÞ ¼
Xn
j¼1

Djujðn; g; cÞ in K̂e: ð16Þ
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In a modal expansion, uj are tensor products of the one-dimensional C0 p-type hierarchical basis

wiðnÞ ¼
1�n
2

i ¼ 1;
1�n
2

� �
1þn
2

� �
P a;b
i�2 26 i6 p; pP 2;

1þn
2

i ¼ p þ 1;

8><
>: ð17Þ

and Dj are coefficients associated with each of the modes of the hierarchical basis. In definition (17) P a;b
p are

the Jacobi polynomials of order p. We use ultraspheric polynomials corresponding to the choice a ¼ b with

a ¼ b ¼ 0 or 1.
In a nodal expansion, uj are tensor products of the one-dimensional C0 spectral nodal basis

hiðnÞ ¼
ðn� 1Þðnþ 1ÞL0

pðnÞ
pðp þ 1ÞLpðniÞðn� niÞ

ð18Þ

and Dj are nodal values due to the Kronecker delta property of the spectral basis. In Eq. (18) Lp ¼ P 0;0
p is the

Legendre polynomial of order p and ni denotes the location of the roots of ðn� 1Þðnþ 1ÞL0
pðnÞ ¼ 0 in the

interval ½�1; 1�. Details on the multidimensional construction of both the modal and nodal expansions can

be found in [13].

We approximate the components of the vector valued function q ¼ ðqx; qyÞ in similar manner as we did
for / in Eq. (16) and proceed to generate a system of linear algebraic equations at the element level using

Eq. (15). The integrals in Eq. (15) are evaluated using Gauss quadrature rules. In our implementation the

Gauss–Legendre rules are used for both the modal and nodal expansions, and full integration is used to

evaluate the integrals.

The global system of equations is assembled from the element contributions using the direct stiffness

summation approach. The assembled system of equations can be written as

K11½ � K12½ � K13½ �
K12½ �T K22½ � K23½ �
K13½ �T K23½ �T K33½ �

0
@

1
A D1

� �
D2
� �
D3
� �

0
B@

1
CA ¼

F 1f g
F 2f g
F 3f g

0
@

1
A; ð19Þ

where fD1g; fD2g; fD3g are the modal/nodal unknown coefficients associated with /, qx, and qy . For details
on standard finite element methods, such as mapping �Ke ¢ K̂e, numerical integration in K̂e, and assembly

using the direct stiffness summation approach see Reddy [2,3].

For large values of time, prohibitively large system of equations will be encountered. To reduce the

computational cost we adopt a time-stepping procedure in which the solution is obtained for space–time

strips in a sequential manner. At time tsþ1 we solve the initial value problem in the space–time strip
sþ1
s

�Kh ¼ �Xh � ðts; tsþ1� using as initial condition the solution from the space plane at time ts from the space–

time strip s
s�1

�Kh ¼ �Xh � ðts�1; ts�. This procedure is continued until the desired time is reached.

2.3. Space–time decoupled and coupled formulations

2.3.1. Accuracy and stability

In space–time decoupled formulations, discretization in space and time are done independently. Tra-

ditionally, the temporal operators are represented by truncated Taylor series expansions in time domain.

Such formulations result in an inherent approximation of the initial boundary value problem and thus the

investigation of stability is essential. Representation of the temporal operator by high-order approxima-

tions, such as multi-step schemes, are only conditionally stable; imposing severe limitations on the size of
the allowable time increment.

In the proposed formulation, the effects of space and time are allowed to remained coupled. There is no

approximation of the initial boundary value problem. Instead, a basis is introduced in time domain to
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represent the time evolution of the independent variables. Since the initial boundary value problem in each

space–time strip is represented and solved with predetermined accuracy of order p, the question of stability

does not arise. The only issue that remains is accuracy; which we can control by hp refinements in time.
Furthermore, the L2 least squares functional can provide an error measure for adaptive h, p, or hp re-

finements in space–time.

To further illustrate the differences between a space–time decoupled and coupled formulations, consider

the following abstract initial boundary value problem:

ou

ot
þLxðuÞ ¼ f in X� ð0; s�; ð20Þ

GðuÞ ¼ h on C� ð0; s�; ð21Þ

in whichLx is a linear first-order partial differential operator in space acting on a vector u of unknowns, f is
a known vector valued forcing function, G is a trace operator acting on u, and h represents a known vector

valued function on the boundary. We assume initial conditions are given and that the problem is well

posed.

In a space–time decoupled formulation we first approximate the initial boundary value problem by

replacing the temporal operator with a discrete equivalent. A popular choice are backward multi-step

schemes, obeying the Dalquist stability barriers for an a-step stable scheme of order Ma. The modified

problem is now:

c0
Dt

usþ1 �
XMa�1

q¼0

bq

Dt
us�q þLxðusþ1Þ ¼ fsþ1 in X; ð22Þ

Gðusþ1Þ ¼ hsþ1 on C; ð23Þ

where c0 ¼
PMa�1

q¼0 bq for consistency, bq are weights associated with a particular multi-step scheme,

Dt ¼ tsþ1 � ts is the time increment, and it is implied that the modified problem will march in time. For

sufficiently small Dt, the modified problem is equivalent to the original problem. To march the problem in

time using a least-squares spatial finite element model, we must minimize the following space functional at

each time step:

JDtðu; f; hÞ ¼
1

2

c0
Dt

usþ1

�����
0
@ �

XMa�1

q¼0

bq

Dt
us�q þLxðusþ1Þ � fsþ1

�����
2

0;X

þ kGðusþ1Þ � hsþ1k20;C

1
A;

where the dependence on the time increment Dt ¼ tsþ1 � ts is evident. Once the discrete model is obtained,

the eigen-spectrum of the amplification matrix needs to be examined and the time-step restriction deter-

mined as a function of an upper bound for the maximum eigenvalue; see [3]. The upper bound for the

maximum eigenvalue will undoubtedly be highly dependent on the spatial expansion order, resulting in
severe restrictions in the allowable time increment for high-order spatial expansions. Note that, unlike the

weak form Galerkin formulation of time-dependent problems, a semidiscrete system of ordinary differential

equations in time for the element degrees of freedom does not arise because the temporal approximation

was performed first.

In a space–time coupled formulation we do not introduce any approximations to the initial boundary

value problem, and minimize a functional in space–time domain:

Jðu; f; hÞ ¼ 1

2

ou

ot

����
 

þLxðuÞ � f

����
2

0;X�½ts;tsþ1�
þ kGðuÞ � hk20;C�½ts;tsþ1�

!
;
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where the interval ½ts; tsþ1� can be taken arbitrarily large, i.e., there are no restrictions on the size of the

interval. In addition, this formulation naturally allows for p-type refinements in time.

2.3.2. Computational cost

Space–time decoupled formulations are commonly associated with reduced computational effort, when

compared to space–time coupled formulations. Although this may hold true for low-order discrete models,

it is not necessarily true for high-order models.

Simulations that literally require thousands of time steps in traditional space–time decoupled formu-

lations can be accomplished in a few space–time strips using the proposed space–time coupled approach. As

a result, the overall computational effort required by the space–time decoupled formulation may actually be

greater than that for the space–time coupled formulation, rendering the coupled approach the most efficient
for a spectral/hp least-squares formulation. Furthermore, the space–time coupled formulation will yield a

continuous solution with predetermined accuracy of order p for all the independent variables in time do-

main. In contrast to a space–time decoupled formulation, where only point values of the independent

variables are obtained in time domain.

The resulting algebraic problem will have a SPD coefficient matrix, which is solved in a fully coupled

manner (i.e., no splitting) using a PCG method. PCG methods are considered to be the best option for an

iterative solution of a linear system of equations with a SPD coefficient matrix. In the absence of round-off

errors, the conjugate gradient method gives the exact solution of the linear system after at most Ndof

(number of degrees of freedom) iteration steps [15]. In practice, the required number of iterations will be

much smaller than Ndof .

The performance of an iterative method is invariably measured on how quickly the iterates converge to

within an acceptable tolerance. The convergence rate of PCG methods is strongly dependent on the con-

dition number of the (preconditioned) coefficient matrix [15,16]. A suitable preconditioner will effectively

lower the condition number of the coefficient matrix and result in fast convergence of the iterates. Ideally,

the preconditioner would be a cheap, good approximation to the exact Cholesky factor of the coefficient

matrix.
For large Ndof , storage or sparse storage of the coefficient matrix is inconvenient and computer memory

intensive. We therefore resort to storage-free techniques, also known as element-by-element solution al-

gorithms, and implement a matrix-free version of the conjugate gradient method. The major disadvantage

of the element-by-element data structure is the limited number of preconditioners that can be formulated

from the unassembled matrices. In this work we choose a simple diagonal preconditioner, known as the

Jacobi preconditioner [15], which does not require the assembly of the global coefficient matrix, not even an

element matrix, which leads to tremendous savings in computer memory. In addition, the element-by-

element nature of the algorithm naturally allows for its parallelization, resulting in considerable solve time
speed-ups. Details of the PCG algorithms and construction of the Jacobi preconditioner can be found in

[16,15] among many others.

2.4. Numerical example: advection of a cosine hill

We consider the two-dimensional transport of / in a rotating flow field. The problem is defined in

the finite region �X ¼ ½�2; 2� � ½�2; 2�. The initial distribution of / is prescribed to be in the form of a

steep cosine hill with unit height. We are interested in pure advection of the initial distribution and to
this end prescribe a high value for the Peclet number. The exact solution consists of a rigid rotation of

the hill about ðx; yÞ ¼ ð0; 0Þ. Undesirable features of the numerical solution are phase and dissipation

errors.

The connected model in space–time, s
sþ1 �Kh ¼ �Xh � ½ts; tsþ1� is shown in Fig. 1. It consists of a 6� 6

uniform finite element mesh in space and a single element layer in time.
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Fig. 1. Space–time computational domain and mesh for the advection of a cosine hill. The computational domain is a space–time strip,

denoted by sþ1
s

�Kh, with Dt ¼ tsþ1 � ts.
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The initial distribution is prescribed in the following form:

0/ðx; yÞ ¼ cos2ðpxÞ cos2ðpyÞ �1:56 x6 � 0:5;�0:56 y6 0:5;
0 otherwise;

	
ð24Þ

together with homogeneous boundary conditions for /. The velocity field is specified to be: ðu; vÞ ¼ ð�y; xÞ.
The initial conditions place the cosine hill at unit distance from ðx; yÞ ¼ ð0; 0Þ. Due to the nature of the

prescribed velocity field all points in the flow field take a complete revolution in 2p units of time, i.e., a full

rotation of the hill will take 2p units of time. The exact solution is thus identical at time t and t þT, with

T ¼ 2p.
The Peclet number considered here is 106. We use modal expansions with pn ¼ pg ¼ 8 and pc ¼ 4 in each

element, i.e. 8th order modal expansions in space and 4th order modal expansions in time, resulting in

Ndof ¼ 36; 015 for a space–time strip. On each space–time strip the linear system of algebraic equations is

solved using the matrix-free conjugate gradient algorithm with a Jacobi preconditioner. For the time

marching procedure the size of the time step, Dt ¼ tsþ1 � ts, was chosen as Dt ¼ 2p=20; so that 20 time steps

make one revolution. We march in time until t ¼ 50T, i.e., we let the cosine hill rotate 50 times around.

Convergence of the conjugate gradient method was declared when the norm of the residual was less than

10�6, which required 1729 (0:048Ndof ) PCG iterations per space–time strip. The L2 space–time least-squares

functional remained below 10�5 throughout the time marching procedure.
We choose the points ðx; yÞ ¼ ð�1; 0Þ, ð0;�1Þ, ð1; 0Þ, and ð0; 1Þ to trace the time history of /. The cosine

hill should pass through these points in rigid body motion at a period of 2p. Fig. 2(a) shows the time history

of / through these points from t ¼ 0 up to t ¼ 5T and Fig. 2(b) from t ¼ 45T up to t ¼ 50T. The results

clearly show that the shape and height of the cosine hill did not change in time, meaning that numerical

dissipation error is negligible. Furthermore, the cosine hill passes through the tracking points with a period

of exactly 2p, meaning that phase error is negligible as well. The small oscillations near the steep base of the

cosine hill are attributed to a lack of spatial resolution at this location.
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Fig. 2. Time history of / at four selected locations: (a) from t ¼ 0 up to t ¼ 5T and (b) from t ¼ 45T up to t ¼ 50T.
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3. The incompressible Navier–Stokes equations

We consider the solution of the Navier–Stokes equations governing viscous incompressible fluid flows,

which in dimensionless form can be stated as follows:

Find the velocity uðx; tÞ and pressure pðx; tÞ such that

ou

ot
þ u � rð Þuþrp � 1

Re
r � ruð Þ
h

þ ruð ÞT
i
¼ f in X� ð0; s�; ð25Þ
r � u ¼ 0 in X� ð0; s�; ð26Þ
uðx; 0Þ ¼ 0uðxÞ in X; ð27Þ
u ¼ us on Cu � ð0; s�; ð28Þ
n̂ � r ¼ fs on Cf � ð0; s�; ð29Þ
where C ¼ Cu [ Cf and Cu \ Cf ¼ ;, s is a real number (time) > 0, Re ¼ qU0L=l is the Reynolds number,

r � 0u ¼ 0, r ¼ �pIþ 1=Re½ðruÞ þ ðruÞT�, f is a dimensionless force, n̂ is the outward unit normal on the

boundary of X, us is the prescribed velocity on the boundary Cu, f
s are the prescribed tractions on the

boundary Cf , and in Eq. (27) the initial conditions are given. We assume the problem is well posed.

In situations where outflow boundary conditions need to be modeled, the Navier–Stokes equations in the

r2u form are preferred [17]. In such cases (using the incompressibility constraint given in Eq. (26)) we

would drop the ðruÞT term in Eq. (25), and the boundary conditions in Eq. (29) would then become

n̂ � ~r ¼ ~fs on Cf � ð0; s�; ð30Þ
where ~r is a pseudo-stress, ~r ¼ �pIþ ð1=ReÞru, and ~fs are the prescribed pseudo-tractions on the

boundary Cf , prescribed as zero at an outflow boundary.
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To allow the use of practical C0-continuous element expansions in the least-squares finite element model,

the governing equations must be recast as an equivalent first-order system and the least-squares functional

defined in terms of L2 norms only. A least-squares finite element model can indeed be developed by using
the Navier–Stokes equations in their strong form, however such formulation would require C1 regularity of

the finite element spaces across inter-element boundaries as a minimum requirement.

Here we consider a vorticity based first-order system. In two-dimensions the total number of variables is

only increased by one and this formulation has the benefit of directly solving for a quantity of physical

relevance, the vorticity.

3.1. The vorticity based first-order system

Introducing the vorticity vector, x ¼ r� u, then by making use of the vector identity

r�r� u ¼ �r2uþr r � uð Þ

and in view of the incompressibility constraint given in Eq. (26), the non-stationary Navier–Stokes equa-
tions, Eqs. (25)–(29), can be replaced by their first-order system equivalent:

Find the velocity uðx; tÞ, pressure pðx; tÞ, and vorticity xðx; tÞ such that

ou

ot
þ u � rð Þuþrp þ 1

Re
r� x ¼ f in X� ð0; s�; ð31Þ
x�r� u ¼ 0 in X� ð0; s�; ð32Þ
r � u ¼ 0 in X� ð0; s�; ð33Þ
r � x ¼ 0 in X� ð0; s�; ð34Þ
u x; 0ð Þ ¼ 0uðxÞ in X; ð35Þ
u ¼ us on Cu � ð0; s�; ð36Þ
x ¼ xs on Cx � ð0; s�: ð37Þ
The seemingly redundant equation (34) is needed in the three dimensional case to make the system of
equations uniformly elliptic [7]. Typically Cu \ Cx ¼ ;, i.e., if velocity is specified at a boundary, vorticity

need not be specified there. Outflow boundary conditions are imposed elegantly and efficiently in a weak

sense through the least-squares functional [1].

3.1.1. L2 least-squares formulation

The L2 least-squares functional associated with the velocity–pressure–vorticity formulation is given by

J u; p;x; fð Þ ¼ 1

2

ou

ot

����
 

þ u � rð Þuþrp þ 1

Re
r� x� f

����
2

0;X�ð0;s�
þ kx�r� uk20;X�ð0;s�

þ kr � uk20;X�ð0;s� þ kr � xk20;X�ð0;s�

!
: ð38Þ

Considering the homogeneous pure velocity boundary condition case, the least-squares principle for

functional (38) can be stated as
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Find ðu; p;xÞ 2 X, uðx; 0Þ ¼ 0uðxÞ such that for all ðv; q;wÞ 2 X

J u; p;x; fð Þ6J v; q;w; fð Þ; ð39Þ

where we use the space

X ¼ u; p;xð Þ 2 H1 Kð Þ
n

� H 1 Kð Þ \ �L2 Kð Þ �H1 Kð ÞjujCu
¼ 0
o
:

Unlike the advection-diffusion equation, the Navier–Stokes equations are non-linear and suitable lineari-

zation procedures are required for its numerical solution. Such linearization procedures were not discussed

in [1], and are detailed in the following. In general, there are two ways to approach the linearization

procedure:

1. Linearize the governing equations first (using Picard or Newton linearization) – so that the least-squares

functional is defined in terms of the linearized governing equations. Application of the least-squares

method will yield a symmetric form. This approach is sometimes called ‘‘linearization by lagging coef-

ficients’’, because the non-linearities are eliminated (or lagged) prior to the minimization step.
2. An alternate approach is to define the least-squares functional in terms of the non-linear equations. Ap-

plication of the least-squares method will yield a non-symmetric form (due to the non-linearity). The re-

sulting Euler–Lagrange equation is linearized using Newton�s method at which point symmetry of the

form is restored.

It is argued in [18] that the application of Newton�s method to linearize the resulting Euler–Lagrange

equation corresponding to the true least-squares functional defined using the non-linear governing equa-

tions (the second approach) is not the same as linearizing the governing equations by lagging coefficients

and then constructing the least-squares functional and its minimization principle (the first approach). The
underlying argument being that the construction of the least-squares functional together with its associated

minimization principle and the method used to find the solution vector that satisfies theses conditions are

two separate issues.

It is interesting to note, however, that when the governing equations are linearized by Newton�s method

prior to constructing the least-squares functional and its minimization principle, both approaches yield

exactly the same (linearized) discrete finite element model. Here, the linearization procedure is illustrated

using the second approach, for which the Euler–Lagrange equation is given by the following variational

problem:
Find ðu; p;xÞ 2 X, uðx; 0Þ ¼ 0uðxÞ such that for all ðv; q;wÞ 2 X

B u; p;xð Þ; v; q;wð Þð Þ ¼ F v; q;wð Þð Þ; ð40Þ

where B is form,

B u; p;xð Þ; v; q;wð Þð Þ ¼
Z s

0

Z
X

ou

ot

�
þ u � rð Þuþrp þ 1

Re
r� x

�
� ov

ot

�
þ v � rð Þuþ u � rð Þv

þrqþ 1

Re
r� w

�
dXdt þ

Z s

0

Z
X

xð � r � uÞ � wð � r � vÞdXdt

þ
Z s

0

Z
X

r � uð Þ r � vð ÞdXdt þ
Z s

0

Z
X

r � xð Þ r � wð ÞdXdt

and F the functional,

F v; q;wð Þð Þ ¼
Z s

0

Z
X
f � ov

ot

�
þ v � rð Þuþ u � rð Þvþrqþ 1

Re
r� w

�
dXdt:



J.P. Pontaza, J.N. Reddy / Journal of Computational Physics 197 (2004) 418–459 431
At this point the form, B, is non-symmetric and non-linear. Using Newton�s method to linearize about a

characteristic state u0, yields the linearized symmetric form,

B u; p;xð Þ; v; q;wð Þð Þ ¼
Z s

0

Z
X

ou

ot

�
þ u � rð Þu0 þ u0 � rð Þuþrp þ 1

Re
r� x

�
� ov

ot

�
þ v � rð Þu0

þ u0 � rð Þvþrqþ 1

Re
r� w

�
dXdt þ

Z s

0

Z
X

xð � r � uÞ � wð � r � vÞdXdt

þ
Z s

0

Z
X

r � uð Þ r � vð ÞdXdt þ
Z s

0

Z
X

r � xð Þ r � wð ÞdXdt

and the functional,

F v; q;wð Þð Þ ¼
Z s

0

Z
X

fð þ u0 � rð Þu0Þ �
ov

ot

�
þ v � rð Þu0 þ u0 � rð Þvþrqþ 1

Re
r� w

�
dXdt:
3.1.2. Finite element model

The finite element model is obtained by either restricting the linearized variational problem to the finite

dimensional subspace Xhp of the infinite dimensional space X, or equivalently by minimizing the linearized

least-squares functional with respect to the chosen approximating spaces. Then the least-squares discrete

finite element model for the incompressible Navier–Stokes equations is given by the following discrete
variational problem:

Find ðuhp; php;xhpÞ 2 Xhp, u
hpðx; 0Þ ¼ 0uðxÞ such that for all ðvhp; qhp;whpÞ 2 Xhp

B uhp; php;xhp
� �

; vhp; qhp;whp� �� �
¼ F vhp; qhp;whp� �� �

: ð41Þ

We proceed to define a discrete problem by choosing appropriate finite element subspaces for the velocity,
pressure, and vorticity. There are no restrictive compatibility conditions on the discrete spaces, so we

choose the same finite element subspace for all primary variables. Following the procedure outlined for the

advection-diffusion problem, we generate a system of equations for the modal/nodal unknown coefficients

associated with velocity, pressure, and vorticity. The discrete problem is solved in an iterative manner with

respect to the Newton linearization.
4. Numerical examples

In the following, we present numerical results obtained with the proposed formulation. We start by

verifying spectral convergence of the numerical algorithm using a manufactured closed form solution to the

non-stationary Navier–Stokes equations. We then consider two-dimensional unsteady lid-driven cavity

flows: impulsively started lid-driven cavity flow and oscillatory lid-driven cavity flow. Next, we consider

transient two-dimensional flow over a backward-facing step. This problem proves to be a valuable

benchmark, as it is well suited to compare the space–time coupled and decoupled formulations in terms of

predictive capabilities and computational cost. In the last example, we consider two-dimensional unsteady
flow past a circular cylinder.
4.1. Convergence

To verify spectral convergence, we use the method of manufactured solutions. The basic idea behind

manufactured solutions is to simply come up with an exact solution, preferably one that is infinitely dif-

ferentiable (i.e., smooth), not trivially reproduced by the element approximation functions (i.e., no poly-
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nomials), and will exercise all the terms in the governing equation (or at least the ones we are interested in

exercising).

We consider two-dimensional, unsteady flow in the bi-unit square, �X ¼ ½�1; 1� � ½�1; 1�. We prescribe
the closed form analytic solution to the non-stationary, incompressible Navier–Stokes equations to be of

the form,

uðx; y; tÞ ¼ au þ bu cosðxuxÞ sinðxuyÞ cosðxu;stÞ;
vðx; y; tÞ ¼ av þ bv sinðxvxÞ cosðxv;stÞ;
pðx; y; tÞ ¼ ap þ bp sinðxpyÞ cosðxp;stÞ:

ð42Þ

The prescribed analytic solution does not satisfy conservation of momentum or conservation of mass, i.e., if

the above velocity and pressure fields are substituted into Eq. (25) (with f ¼ 0) and Eq. (26) a residual term

for each of the equations will result. For the conservation of momentum, Eq. (25), a residual Rmom will

result. Likewise, for the conservation of mass given by Eq. (26), a residualRcon will result. These residuals are

simply treated as source terms, belonging to their respective equations, that produce the desired (prescribed)

solution. These source terms or residuals are commonly referred to as the consistent forcing functions.

The choice of constants in Eq. (42) are shown in Table 1. The connected model in space–time,
sþ1
s

�Kh ¼ �Xh � ½ts; tsþ1�, consists of a 4� 4 uniform finite element mesh in space and a single element layer in

time. Having chosen the space–time discretization, we now systematically increase the p-levels of the ele-

ment approximation functions (in space–time) and expect the error measures to decay exponentially fast as

the p-level is increased. In a logarithmic-linear scale the expected rate of convergence would appear as a

straight line.

A suitable error measure is, for example, the L2 least-squares functional (J). Convergence of this

measure to zero implies that the L2 norm of the residuals of the governing equations are going to zero. An

equally important error measure is the L2 norm of the difference between the numerical solution and the
analytic solution. Convergence of this measure to zero implies that the numerical solution approaches the

exact solution. As a reminder, we note that the L2 norm is defined over space–time; see Eq. (12).

The non-stationary incompressible Navier–Stokes equations in the vorticity based first-order form are

discretized using the space–time coupled least-squares finite element formulation with nodal expansions in

space–time. We take Dt ¼ tsþ1 � ts ¼ 0:50 and compute the solution in a single space–time strip for in-

creasing expansion orders, pn ¼ pg ¼ pc ¼ p. The exact solution is used to compute the initial condition and

Dirichlet boundary conditions for the velocity components. Pressure was prescribed only at a point, i.e., a

space–time line. In Fig. 3 we plot the L2 least-squares functional and L2 error of the velocity, pressure, and
vorticity fields in space–time as a function of the expansion order in a logarithmic-linear scale. Exponen-

tially fast decay (spectral convergence) of the L2 least-squares functional and L2 error is observed in space–

time. Note that only algebraic decay in time would be observed using a space–time decoupled formulation.

Implicitly, Fig. 3 also verifies the unconditional stability of the space–time coupled formulation. In a

space–time decoupled formulation as the order of the time approximation is increased the stability region

for the time approximation decreases and a smaller time increment must be used to remain stable. Here we

have continuously increased the order of the time approximation and kept Dt ¼ tsþ1 � ts constant at 0.50.
Table 1

Numerical values of the constants used in the exact solution, Eq. (42), to verify spectral convergence

u v p

a 1.0 0.0 0.0

b 0.4 0.5 0.5

x 2p 2p 2p
xs 2p 2p 2p
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Fig. 3. Decay of the least-squares functional and convergence of the velocity, pressure, and vorticity space–time fields to the exact

solution in the L2 norm.
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4.2. Impulsively started lid-driven cavity flow

We consider the two-dimensional flow of an incompressible fluid bounded in a square enclosure,
�X ¼ ½0; 1� � ½0; 1�. The fluid is initially at rest and is put into motion by the sudden translation of the top

boundary. The connected model in space–time, sþ1
s

�Kh ¼ �Xh � ½ts; tsþ1�, is shown in Fig. 4. It consists of 6� 6

finite elements in space and a single element layer in time.
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Fig. 4. Space–time computational domain and mesh for the lid-driven cavity problem. The computational domain is a space–time

strip, denoted by sþ1
s

�Kh, with Dt ¼ tsþ1 � ts.



434 J.P. Pontaza, J.N. Reddy / Journal of Computational Physics 197 (2004) 418–459
The boundary conditions are as follows: u ¼ v ¼ 0 on all solid walls, p ¼ 0 at a point, and u ¼ usðxÞ,
v ¼ 0 on the top driven surface (y ¼ 1:0). On the driven surface we specify a hyperbolic tangent u-velocity
distribution:

ulidðxÞ ¼
tanhðbxÞ 06 x6 0:5;
� tanhðbðx� 1ÞÞ 0:5 < x6 1:0;

	
ð43Þ

with b > 0. Here we take b ¼ 50, which gives a smooth but at the same time sharp transition from u ¼ 0:0
to u ¼ 1:0 near the walls of the driven surface. This boundary condition results in a well-posed boundary

condition, in the sense that singularities at the corners of the driven surface are eliminated. It closely

emulates the standard (ill-posed) boundary condition where no transition is allowed between no-slip

and the lid-driven velocity. The standard boundary condition (without additional h-refinement near the

corners of the lid-driven surface) would destroy the high accuracy properties associated with the use of

high-order expansions by polluting the solution near the corners (by inducing oscillatory behavior). High-

order methods are sensitive to these types of singularities and in this sense are not as robust as low-order

methods.
The u-velocity of the driven surface also varies in time according to a hyperbolic tangent distribution,

ulidðtÞ ¼ tanhðtÞ. This ensures a smooth and fast start-up translation of the driven surface. Both, spatial and

temporal, distributions are shown in Fig. 5.

Note that the boundary conditions are imposed on space–time surfaces, so that the boundary condition

p ¼ 0 at a point translates into p ¼ 0 in a space–time line. Similarly, u ¼ v ¼ 0 on all solid walls implies

u ¼ v ¼ 0 on all space–time surfaces associated with a solid wall. On the space–time surface corresponding

to the ‘‘driven surface’’, spatial and temporal variations need to be accounted for when specifying the

boundary condition.
The Reynolds number considered here is 400. We use nodal expansions with pn ¼ pg ¼ 5 and pc ¼ 2 in

each element, resulting in Ndof ¼ 11; 532 for a space–time strip. At each Newton step the linear system

of algebraic equations is solved using the matrix-free conjugate gradient algorithm with a Jacobi

preconditioner.

For the time marching procedure the size of the time step, Dt ¼ tsþ1 � ts, was chosen as Dt ¼ 0:2 for

t 2 ð0; 2�, Dt ¼ 0:5 for t 2 ð2; 10�, and Dt ¼ 1:0 for t > 10. We march in time until a steady-state is

reached.

Convergence of the conjugate gradient method was declared when the norm of the residual was less than
10�6. Nonlinear convergence was declared when the relative norm of the residual in velocities between two

consecutive iterations was less than 10�4, which typically required three Newton iterations per space–time
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Fig. 5. Prescribed space–time u-velocity distributions on the driven surface of the cavity.
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strip. Steady-state was declared when the relative norm of the residual in velocities between two consecutive

space–time strips was less than 10�5, which was reached at t ¼ 35. The L2 space–time least-squares func-

tional remained below 10�3 throughout the time marching procedure.
Fig. 6 shows the time history of the flow by streamline plots. Upon start-up a long narrow vortex forms

close to lid. The vortex gradually moves to the right and begins to grow. Around t ¼ 6 the recirculation

region in the lower right corner of the cavity appears. The primary vortex continues to broaden and moves

towards its steady-state position.

Fig. 7 shows the time history of the u-velocity component at two locations along the vertical mid-line of

the cavity, one 0.2 units away from the lid and the other 0.2 units away from the bottom surface. It is

interesting to see that upon start-up the fluid close to the lid starts moving in the opposite direction. Fig. 8

shows the steady-state velocity profile along the vertical mid-line of the cavity. The steady-state solution is
in excellent agreement with the benchmark solution of Ghia et al. [19].

In Fig. 9 we plot the time history of PCG iterations. The problem is non-linear, so each data point in the

plot represents the sum of PCG iterations at each Newton step per space–time strip, thus representing the

total number of PCG iterations per space–time strip. During the impulsive start of the lid, as much as 1300
t = 0.20 t = 1.00

t = 2.50 t = 6.00

t = 9.50 t = 35.00

Fig. 6. Time history streamline plots for impulsively started lid-driven cavity flow at Re ¼ 400.
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(0:113Ndof ) PCG iterations (using a Jacobi preconditioner) are required to meet non-linear and PCG

convergence criteria. In the PCG iteration procedure, the solution from the previous space–time strip is

used as an initial guess for the solution at the current strip, resulting in a reduction in the number of it-
erations required to achieve the PCG convergence tolerance as the numerical solution approaches the

steady-state.

4.3. Oscillatory lid-driven cavity flow

Again, we consider the two-dimensional flow of an incompressible fluid bounded in a square enclosure,
�X ¼ ½0; 1� � ½0; 1�. The fluid is initially in a steady-state motion brought about by the translation of the top

boundary. The top boundary suddenly begins to oscillate in a periodic fashion. The connected model in
space–time is the same as that used for the impulsively started lid-driven cavity flow, and is shown in Fig. 4.

It consists of 6� 6 finite elements in space and a single element layer in time.
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The boundary conditions are the same as that used for the impulsively started lid-driven cavity flow, with

the exception that now the u-velocity of the driven surface varies in time according to the cosine distri-
bution: ulidðtÞ ¼ cosðtÞ, with period T ¼ 2p.

The Reynolds number considered here is 400. We use nodal expansions with pn ¼ pg ¼ 5 and pc ¼ 2 in

each element, resulting in Ndof ¼ 11; 532 for a space–time strip. At each Newton step the linear system of

algebraic equations is solved using the matrix-free conjugate gradient algorithm with a Jacobi precondi-

tioner. For the time marching procedure the size of the time step, Dt ¼ tsþ1 � ts, was chosen as Dt ¼ 2p=20;
so that 20 time steps make one period. We march in time until a periodic steady-state is well established.

Convergence of the conjugate gradient method was declared when the norm of the residual was less than

10�6. Nonlinear convergence was declared when the relative norm of the residual in velocities between two
consecutive iterations was less than 10�4, which typically required three Newton iterations per space–time

strip. The L2 space–time least-squares functional remained below 10�3 throughout the time marching

procedure.

Fig. 10 shows streamline plots at time t ¼ T, 2T, 4T, and 8T. It takes about six periods to reach the

periodic steady-state at which the solution is identical at time t and t þT. Fig. 11 shows the time history up

to t ¼ 16T of the u-velocity component at two locations along the vertical mid-line of the cavity, one 0.2

units away from the lid and the other 0.2 units away from the bottom surface. Streamline contour plots for

the periodic steady-state solution are presented in Fig. 12 at the 8th cycle for 8T6 t6 9T. Fig. 12(a)–(h)
correspond to the time sequence t ¼ 8Tþ bT, where b ¼ 2=10, 3/10, 4/10, 5/10, 7/10, 8/10, 9/10, 10/10.
The property of mirror images is observed between Fig. 12(a)–(d) and (e)–(h) with respect to x ¼ 0:5. Our

results compare well with those by Iwatsu et al. [20] using the MAC method and Soh et al. [21] using an

artificial compressibility method.

Fig. 13 shows the time history of PCG iterations for periodic steady-state flow conditions. Each data

point in the plot represents the sum of PCG iterations at each Newton step per space–time strip, thus

representing the total number of PCG iterations per space–time strip. In the PCG iteration procedure, the

solution from the previous space–time strip is used as an initial guess for the solution at the current strip –
explaining the sinuous behavior of the PCG iteration history. From Fig. 13 we see that, in the periodic

steady-state, the total number of iterations required to meet non-linear and PCG convergence criteria per

space–time strip varies between 1200 (0:104Ndof ) PCG iterations and 1600 (0:139Ndof ) PCG iterations (using

a Jacobi preconditioner).
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Fig. 10. Time history streamline plots for oscillatory lid-driven cavity flow for Re ¼ 400: (a) t ¼ T, (b) t ¼ 2T, (c) t ¼ 4T, and (d)

t ¼ 8T.
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4.4. Transient flow over a backward-facing step

We consider the two-dimensional flow over a backward-facing step at Re ¼ 800. In [1], we used the

stationary form of the incompressible Navier–Stokes equations directly to develop the finite element model
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Fig. 12. Time history streamline plots for oscillatory lid-driven cavity flow for Re ¼ 400 at time t ¼ 8Tþ bT; (a) b ¼ 2=10, (b)b ¼ 3=10, (c) b ¼ 4=10, (d) b ¼ 5=10, (e) b ¼ 7=10, (f) b ¼ 8=10, (g) b ¼ 9=10, (h) b ¼ 10=10.
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(i.e., we assumed a priori that a steady-state solution existed) and our numerical results were compared and

found to be in excellent agreement with the benchmark numerical solution of Gartling [22], who also used

the stationary form of the incompressible Navier–Stokes equations directly.

Here we allow for a transient simulation and are concerned with the fundamental question of whether a
steady-state solution exists for the two-dimensional flow over a backward facing step at Re ¼ 800. In the

study of Gresho et al. [23] this fundamental issue was addressed, in the form of a detailed grid refinement

study using four different numerical methods. The study conclusively showed that the two-dimensional flow
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over a backward-facing step at Re ¼ 800 attains a stable (i.e., non-periodic) steady-state. These observa-

tions were subsequently confirmed in a study by Fortin et al. [24], using dynamical systems theory, showing

that the first Hopf bifurcation point (transition point) for two-dimensional flow over a backward-facing

step occurs at least up to Re ¼ 1600.

The numerical simulations of Gresho et al. [23] were performed on the simplified step geometry shown in

Fig. 14 and among the four numerical methods considered, a (space–time decoupled) spectral element
formulation was used. The study of Gresho et al. [23] revealed that inadequate spatial resolution induces

chaotic-like temporal behavior, whereas when sufficiently high spatial resolution is used the flow evolves

towards a steady-state by a monotonic decay of the transient. This behavior was also observed in the work

of Torczynski [25], who performed simulations using the standard step geometry (where the channel

portion upstream of the step is included) and also used a (space–time decoupled) spectral element for-

mulation. Adding to the study of Torczynski [25], Yee et al. [26] showed that the initial condition (in

addition to the spatial resolution) also strongly influences the temporal behavior of the flow. The spectral

element formulations used in these studies resemble that developed by Patera [27], who also performed
simulations using the standard step geometry up to Re ¼ 250.

In the present study, we wish to investigate the temporal behavior of the two-dimensional flow over a

backward-facing step at Re ¼ 800 using the proposed least-squares finite element formulation. We consider

space–time decoupled and space–time coupled formulations. For comparison of the two formulations, we

choose a second-order accurate in time discretization for the temporal terms in constructing the space–time

decoupled formulation and restrict the space–time coupled formulation to a p-level of order 2 in time

domain.
u = u S
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Fig. 14. Geometry and boundary conditions for flow over a backward-facing step: simplified step geometry.
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4.4.1. Simplified step geometry

First, the simulations are performed using the simplified step geometry shown in Fig. 14, with the length

of the channel extending a distance L=H ¼ 15 downstream of the step, which is sufficiently long to preclude
undue influence of the finite channel length at this Reynolds number [22,23]. Even though the geometric

singularity due to the corner step is excluded by ignoring the portion of the channel upstream of the step,

the singularities in pressure and vorticity still exist due to the inlet boundary condition. The Reynolds

number is based on the mean inlet velocity and the height of the channel.

The boundary and initial conditions used here are those used in the work of Gresho et al. [23] for the

spectral element numerical simulation: u ¼ v ¼ 0 on the horizontal walls, �p þ lou=on ¼ 0 and ov=on ¼ 0

on the outflow boundary, and u ¼ ½tanhðt=4Þ�uBðyÞ þ ½1� tanhðt=4Þ�uPðyÞ and v ¼ 0 on the inflow

boundary and the step face. Here uBðyÞ ¼ max½0; 24yð0:5� yÞ� is the true inlet boundary condition and
uPðyÞ ¼ 3ð0:5� yÞð0:5þ yÞ is the Poiseuille flow observed infinitely far downstream at steady flow condi-

tions. The initial velocity field is set to u ¼ uPðyÞ and v ¼ 0 everywhere in the computational domain. Note

that the inlet condition is varied fast but smoothly from Poiseuille flow to flow over a backward-facing step,

thus inducing a transient wave strong enough to excite sustained unsteady behavior, if that is the correct

asymptotic steady-state behavior.

The transient wave will travel through the entire channel length. The main flow coming from the

inlet will follow a sinuous path through the channel, forming a series of eddies along the upper and

lower wall (see Fig. 18). As the flow evolves, the strength of the eddies should diminish and the two
major separation zones near the inlet of the channel attain their steady-state position. Eventually the

weaker eddies along the channel length die out and the flow reaches a steady-state. Based on the

observations made in the previous work of Gresho et al. [23] and Torczynski [25], high enough spatial

resolution should be used to adequately resolve all spatial features of the flow. Otherwise, lack of

spatial resolution will induce unrealistic temporal chaotic behavior resulting in an erroneous prediction

of the long-term behavior of the flow. The rich physics of the flow and the danger of polluting the long-

term behavior of the flow by inadequate spatial resolution render this benchmark problem a challenging

one for high-order methods. In addition, as we subsequently show through numerical results, the
problem is ideally suited to test and compare the performance of space–time coupled and decoupled

formulations.

We discretize the domain, �X ¼ ½0; 15� � ½�0:5; 0:5�, using 120 finite elements: four uniformly spaced

elements along the height of the channel and 30 uniformly spaced elements along the length of the channel.

This mesh coincides with the high resolution mesh in the work of Gresho et al. [23] (although their

computational domain extended a distance L=H ¼ 17 downstream of the step). The numerical simulation is

performed using the unsteady, two-dimensional incompressible Navier–Stokes equations in the vorticity

based first-order form. The outflow boundary conditions are imposed in a weak sense through the least-
squares functional.

First we use a spatial resolution of order 7, for which Gresho et al. [23] reported a steady monotonic

decay of the transient. Recall that, for this simulation, a temporal resolution of order 2 is used for the

space–time coupled formulation and a second-order accurate representation (the trapezoidal rule) is used

for the temporal terms in the space–time decoupled formulation. A single element layer in time domain is

used for the space–time coupled formulation. For the time marching procedure the size of the time step,

Dt ¼ tsþ1 � ts, was chosen as Dt ¼ 0:20 for the space–time coupled and decoupled formulations. We march

in time until a steady-state is well established.
The resulting discrete models have a total of 73,428 dof for the space–time coupled finite element model

and 24,476 dof for the space–time decoupled finite element model. At each Newton step, the linear system

of equations with a SPD coefficient matrix are solved using the conjugate gradient method with a Jacobi

preconditioner in matrix-free form. Convergence of the conjugate gradient method was declared when the

norm of the residual was less than 10�6. Nonlinear convergence was declared when the relative norm of the
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residual in velocities, kDuhpk=kuhpk, was less than 10�4, which typically required three Newton iterations per

space–time strip/time step.

Fig. 15 shows a plot of the L2 least-squares functional as a function of time, for the space–time coupled
and decoupled formulations. The legend in Fig. 15 describes the resolution of the simulation in space–time

and the size of the time step. For example, 7/7/2 Dt ¼ 0:20 denotes a space–time coupled simulation with

isotropic resolution of order 7 in space (pn ¼ pg ¼ 7) and order 2 in time (pc ¼ 2), with the size of the time

step fixed at 0.20. On the other hand, 7/7/TR Dt ¼ 0:20 denotes a space–time decoupled simulation with

isotropic resolution of order 7 in space and a trapezoidal rule (TR) representation for the temporal terms,

with the size of the time step fixed at 0.20.

From Fig. 15 it is clear that the space–time decoupled formulation (for Dt ¼ 0:20) becomes unstable,

forcing an early termination of the simulation. On the other hand, the space–time coupled formulation
remains stable throughout; at a lower value of the L2 least-squares functional than that initially attained by

the decoupled formulation. The decoupled formulation is stable at early times, during the smooth transition

from Poiseuille flow to flow over a backward-facing step. However, by the time the transient wave reaches

the outflow boundary a severe instability had occurred and grown to such extent which forced the ter-

mination of the simulation.

Next, we investigate the effect of the time step size on the stability of the decoupled formulation. The

results, also plotted in Fig. 15, show that the space–time decoupled formulation remains unstable, even for

Dt ¼ 0:05. In fact, when Dt is decreased the instability starts at earlier times in the simulation – perhaps
suggesting a lack of numerical damping (inherent to the TR representation). With this in mind and in an

attempt to stabilize the space–time decoupled simulation we implement the generalized a-method (GAM)

family of approximations [28–30], which retain second-order accuracy in time and allow for user controlled

high frequency damping by the single free integration parameter, 0:06 qh
1 6 1:0. For qh

1 ¼ 1:0 the method

is identical to the trapezoidal rule and for choices of 06qh
1 < 1:0 numerical damping is added with de-

creasing qh
1. Fig. 16 shows the time history of the L2 least-squares functional for the space–time decoupled

formulation using the GAM for Dt ¼ 0:10 and popular choices of qh
1 (see [30]). Increasing the numerical

dissipation clearly does not stabilize the simulation.
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Realizing the underlying assumption in the decoupled formulation, namely that space and time are

decoupled, we are led to believe that the spatial resolution is still not high enough and is inducing chaotic

temporal instabilities that cause the space–time decoupled formulation to become unstable. Clearly this

observation does not apply to the space–time coupled formulation, where no instability is observed.

Based on the above observation, we increase the spatial resolution of the space–time decoupled simu-

lation to order 9 (having a total of 40,108 dof). For this spatial resolution the space–time decoupled for-

mulation, with TR and Dt ¼ 0:20, is stable. Fig. 17 shows the time history of the L2 least-squares functional
for the space–time coupled simulation 7/7/2 Dt ¼ 0:20 and the space–time decoupled formulation 9/9/TR
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Dt ¼ 0:20. Even though the space–time decoupled simulation has a higher spatial resolution, the space–time

coupled formulation (with a lower spatial resolution) achieves a lower value for the L2 least-squares

functional.

At t ¼ 400:0 the relative norm of the residual in velocities between two consecutive space–time strips was

less than 10�5 for the space–time coupled formulation and less than 10�4 between two consecutive time

steps for the space–time decoupled formulation, indicating that a steady-state was achieved. Fig. 18 shows

the evolution of the flow field in the form of streamline plots, computed using the space–time coupled

formulation (7/7/2 Dt ¼ 0:20). Fig. 19 shows the time history of the v-velocity component at two locations
along the channel�s mid-section for the space–time coupled (7/7/2 Dt ¼ 0:20) and decoupled formulations

(9/9/TR Dt ¼ 0:20). It is seen that both simulations do not exhibit a monotonic decay of the transient but

rather an oscillatory decay of the transient, indicating that additional spatial resolution is needed. In ad-

dition, the space–time decoupled simulation exhibits a more oscillatory temporal behavior than the coupled

simulation. Nevertheless, the desired steady-state flow condition is achieved using both approaches and

coincides with the steady-state solution reported in [1].

Of importance is the computational cost associated with each of the simulations. Fig. 20 shows the time

histories of PCG iterations for the space–time coupled (7/7/2 Dt ¼ 0:20) and decoupled (9/9/TR Dt ¼ 0:20)
simulations. Each data point in the plot is the sum of PCG iterations at each Newton step per space–time

strip/time-step (typically three Newton steps), thus representing the total cost per space–time strip/time

step. From Fig. 20 we see that initially both simulations require approximately the same number of PCG

iterations to meet non-linear and PCG convergence criteria, with the space–time coupled simulation

eventually requiring less PCG iterations. However, the space–time decoupled simulation requires less work
000w as an initial condition.
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per PCG iteration, having only 40,108 dof, thus resulting in a lower total CPU solve time when compared

to the space–time coupled simulation.

In a deliberate attempt to obtain an unstable simulation with the space–time coupled formulation, we
decrease the spatial resolution to order 5, and run the simulation 5/5/2 Dt ¼ 0:20. For such spatial reso-

lution Gresho et al. [23] reported �numerical errors�, denoting termination of the numerical solution due to

un-physically large values in velocities. In contrast to the results reported using the (space–time decoupled)

spectral element formulation in Gresho et al. [23], the least-squares space–time coupled simulation re-

mained stable and predicted a steady-state. The time history of the v-velocity component at two locations

along the channel�s mid-section for the simulation 5/5/2 Dt ¼ 0:20 is shown in Fig. 21. As expected, the

decay of the transient displays a more pronounced oscillatory behavior than that obtained for the simu-

lation 7/7/2 Dt ¼ 0:20, shown in Fig. 19. Nevertheless, the desired stead-state is attained.

4.4.2. Standard step geometry

We now consider the standard step geometry, where a portion of the channel upstream of the step

is included. The interest in this configuration is to determine whether the geometric singularity due to

the sharp corner step will affect the predictive capabilities of the formulation. It is well-known that

high-order methods are very sensitive to geometric singularities and may have difficulty preserving

monotonicity in their presence. In this context, high-order methods are not as robust as low-order

methods.
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The standard step geometry is obtained from the simplified step geometry, shown in Fig. 14, by

including a channel of length 2H upstream of the step. The connected model is the same used for the

simplified step geometry and is extended, without mesh refinements near the sharp corner, to the up-
stream channel. The boundary and initial conditions are the same as before, with the exception that the

inflow condition is now applied at the inlet of the channel upstream of the step and is of the form:

u ¼ ½tanhðt= 16Þ�uBðyÞ þ ½1� tanhðt=16Þ�uPðyÞ and v ¼ 0 on the inflow boundary and step surface. The

boundary and initial conditions correspond to those used in the work of Torczynski [25] and Yee et al.

[26], who performed simulations using the standard step geometry and a (space–time decoupled) spectral

element formulation. Like before, the combination of boundary and initial conditions allow flow

through the step surface early in the simulation to achieve a smooth transition from Poiseuille flow to

flow over a backward-facing step. The transition is prescribed to take place over a longer period of time,
compared to the simulations in the simplified step geometry. More pronounced transitions were not

investigated. Initial condition dependence on the asymptotic behavior of the flow is reported in the

study of Yee et al. [26].

Fig. 22 shows the time history of the flow field in a series of streamline plots, computed using the space–

time coupled formulation 7/7/2 Dt ¼ 0:20. From Fig. 22 it is evident that the sharp corner step did not have

any effects (in the form of inducing oscillatory behavior) on the flow field.

At t ¼ 500:0 the relative norm of the residual in velocities between two consecutive space–time strips

was less than 10�5, indicating that a steady-state was achieved. Fig. 23 shows the time history of the v-
velocity component at the same two locations for the previously presented simplified step geometry

simulations, shown in Figs. 19 and 21. At this spatial resolution, the decay of the transient initially
e history streamline plots for ”ow over a backward-facing step at Re¼ 800 using Poiseuille ”ow as an initial condition.coupled simulation 7/7/2Dt ¼ 0:20. Standard step geometry.
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displays a chaotic-like behavior, then seems to attain a periodic steady-state, and eventually achieves the

desired steady-state. The L2 least-squares functional remained below 10�3 throughout the simulation. The

PCG iteration history for the simulation is shown in Fig. 24 and is not much different from the one

obtained for the simplified step geometry simulation, indicating that the sharp corner step did not have

marked effects on the conditioning of the coefficient matrix. The space–time decoupled simulations with

spatial resolution of order 7 and 9 and time step size Dt ¼ 0:20, became unstable resulting in early

termination.
The above results (for the simplified and standard step geometry) indicate that the least-squares space–

time coupled formulation for unsteady two-dimensional simulations is robust, computationally-cost

competitive, and has superior predictive capabilities when compared to the space–time decoupled for-

mulation. This problem is clearly more demanding, in terms of space–time resolution, than the previously

considered unsteady cavity flows. For the lid-driven cavity flows considered earlier, the space–time

coupled and decoupled formulations give indistinguishable time histories. However, in general, we can

never classify a problem a priori as needing low or high space–time resolution. In this sense, space–time

coupled formulations represent an attractive and affordable alternative to space–time decoupled
formulations.

For problems where the singularities due to sharp corners may be more severe (e.g., 2-D flow past a

square cylinder), the use of conforming discretizations using high-order element expansions is generally not

appropriate or efficient. Such problems may be better handled with a collocation least-squares approach,

using a bi-linear basis.
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4.5. Flow past a circular cylinder

We consider the two-dimensional flow of an incompressible fluid past a circular cylinder. At low

Reynolds numbers (5 < Re < 40) the flow is stationary and characterized by a pair of standing vortices

appearing behind the cylinder. The size of the separated flow region increases with increasing Reynolds

number, until a limit in which the wake becomes unstable. At this critical Reynolds number,

Rec � 46:2 [31,32], vortices are shed from the aft of the circular cylinder, forming the well-known

von Karman vortex street. The flow may be treated as two-dimensional until Re3-Dc � 188:5 [33], at
which point the cylinder wake becomes three-dimensional due to a secondary instability of the vortex

street.

From the numerical simulation point of view, the interest of this problem is in the accurate resolution of

the vortex street and the modelling of the outflow boundary conditions, the latter which arises from the

necessity of truncating the domain in a region where the vortex street is fully developed. This transient

problem is frequently used to assess the accuracy of time-marching numerical procedures and open

boundary conditions, as it is characterized by several important flow parameters, such as the non-

dimensional frequency of the vortex shedding (the Strouhal number), the amplitude of the lift coefficient,
and the mean drag coefficient.

The cylinder is of unit diameter and is placed in the finite region �X ¼ ½�15:5; 25:5� � ½�20:5; 20:5�. The
center of the cylinder lies at ðx; yÞ ¼ ð0; 0Þ, so that the inflow boundary is located 15.5 cylinder diameters in

front of the center of the cylinder and the outflow boundary 25.5 cylinder diameters downstream of the

center of the cylinder. The top and bottom boundaries are located each 20.5 cylinder diameters above and

below the center of the cylinder. The Reynolds number is based on the free-stream velocity and cylinder

diameter.

Having considered a large computational domain allows us to impose free-stream boundary conditions
at the top and bottom of the domain without noticeably affecting the solution. The boundary conditions

include a specified value of 1:0 for the x-component of velocity at the inflow, top, and bottom boundaries,

i.e., the free-stream velocity u1 is specified to be unity. At these boundaries the y-component of velocity is
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set to zero. No-slip boundary conditions are specified at the cylinder surface: u ¼ v ¼ 0. The outflow

boundary conditions, Eq. (30), are imposed in a weak sense through the least-squares functional:

J u; p;x; fð Þ ¼ 1

2

ou

ot

����
 

þ u � rð Þuþrp þ 1

Re
r� x� f

����
2

0;X�ð0;s�
þ kx�r� uk20;X�ð0;s�

þ kr � uk20;X�ð0;s� þ kr � xk20;X�ð0;s� þ kn̂ � ~rk20;Coutflow�ð0;s�

!
:

The fluid is initially at rest and the free-stream velocity is gradually increased in time from 0.0 to 1.0 ac-

cording to a hyperbolic tangent distribution, u1ðtÞ ¼ tanhðtÞ. An alternate initial condition is a steady-state

solution (computed with the steady-state solver). The final periodic steady-state should be independent of

the well-posed initial condition.
The connected model in space–time, sþ1

s
�Kh ¼ �Xh � ½ts; tsþ1�, consists of 501 finite elements in space and a

single element layer in time. Fig. 25(a)–(c) shows the connected model and a close-up view of the geometric

discretization around the circular cylinder. In the previous examples a subparametric formulation using a

linear basis for the mapping, �Ke ¢ K̂e, was sufficient to exactly represent the straight-sided geometries. In

order to accurately represent the circular surface, we implement an isoparametric formulation; i.e., we use

the same expansion order for the element degrees of freedom and for the mapping, �Ke ¢ K̂e.
(b) (c)

(a)

0
5

0
5

y

Fig. 25. Space–time computational domain and mesh for flow past a circular cylinder. (a) Partial view of the connected model in space,
�Xh. (b) Close-up view of the geometric spatial discretization around the circular cylinder. (c) The computational domain is a space–timestrip, denoted by

sþ1
s

�K

h

, withDt¼t sþ1 � ts. Here we use 501 elements in space and a single element layer in time.450J.P. Pontaza, J.N. Reddy / Journal of Computational Physics 197 (2004) 418–459
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The Reynolds number considered here is 100. We use nodal expansions with pn ¼ pg ¼ 4 and pc ¼ 3 in

each element. At each Newton step the linear system of algebraic equations is solved using the matrix-free

conjugate gradient algorithm with a Jacobi preconditioner. For the time marching procedure the size of the
time step, Dt ¼ tsþ1 � ts, was chosen as Dt ¼ 0:50.

We march in time until a periodic steady-state is well established. Convergence of the conjugate gradient

method was declared when the norm of the residual was less than 10�6. Nonlinear convergence was de-

clared when the relative norm of the residual in velocities between two consecutive iterations was less than

10�4, which typically required three Newton iterations per space–time strip. The L2 space–time least-squares

functional remained below 10�3 throughout the time marching procedure.

We choose two points in the near wake of the cylinder to trace the change of the velocity components

and vorticity with time. Figs. 26 and 27 show the time history of the v-velocity component and vorticity at
the points ðx; yÞ ¼ ð1; 0Þ and ðx; yÞ ¼ ð2; 0Þ, located 0.5 and 1.5 cylinder diameters behind the cylinder.

From the figures we see that shedding starts around t ¼ 50. No artificial perturbation is used to induce the

vortex shedding. The flow reaches a periodic steady-state by t ¼ 100. The period for the v-velocity com-

ponent is the same as that for the vorticity. The shedding period, obtained from Fig. 26 to within 0.05 time

units, is found to be T ¼ 6:05; which gives a dimensionless shedding frequency of St ¼ 0:1653. Our results

are in good agreement with the experimental measurements of Williamson [34] and with the high-order

splitting spectral/hp numerical results of Sherwin and Karniadakis [35], reported as St ¼ 0:1643 and 0.1667,

respectively.
The viscous and pressure forces acting on the cylinder are given by

Fs ¼
I

l ruð Þ
h

þ ruð ÞT
i
� n̂ds; Fp ¼ �

I
pn̂ds

and the corresponding force coefficients obtained by normalizing the forces by the dynamic pressure, 1
2
qu21,

acting on a unit span of the circular cylinder. The predicted average drag coefficient is �CD ¼ 1:345, in good

agreement with the high-order splitting spectral/hp numerical results of Henderson [33], reported as
�CD ¼ 1:35. The amplitude of the lift coefficient is predicted as CL ¼ �0:332. Fig. 28 shows the time history

of the lift coefficient with its pressure and viscous contributions.

Fig. 29 depicts the vortex shedding cycle behind the circular cylinder by showing vorticity contours at
four successive times during one period. Eddies are formed behind the cylinder and are washed away into
time
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Fig. 28. Time history of lift coefficient (solid line). Shown is also the pressure contribution (dashed line) and the viscous contribution

(dotted line).
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the wake region. This flow pattern is popularly known as the von Karman vortex street. Two eddies, al-

ternatively of positive and negative vorticity, are shed within each period from the aft of the circular

cylinder. Fig. 30 shows instantaneous velocity and pressure contours at the reference dimensionless time

t0 ¼ 160. From visual inspection of the contour plots in Figs. 29 and 30 it is clear that the outflow boundary

condition allows the flow to exit the computational domain gracefully and does not disturb the upstream

flow.

Even though results were presented for the simulation 4/4/3 Dt ¼ 0:50, we also performed simulations

with lower time domain resolution, lower Dt, higher h-resolution, and with space–time decoupled formu-
lations. We present results for these simulations in the form of computational cost metrics, essential in

evaluating the overall performance of the formulation.

Fig. 31 shows the time histories of PCG iterations for space–time coupled simulations 4/4/3 Dt ¼ 0:50 in

two different meshes. Mesh A consists of 501 finite elements in space and a single element layer in time and

is shown in Fig. 25. Mesh B is an h-refined version of mesh A, with 792 finite elements in space and a single
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Fig. 30. Instantaneous (a) u-velocity, (b) v-velocity, and (c) pressure contours for the flow around a circular cylinder at t¼ t0.
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element layer in time. For this space–time resolution, mesh A has associated with it a total of 131,456 dof

and mesh B a total of 206,784 dof. Each data point in the plot is the sum of PCG iterations at each Newton

step per space–time strip (typically three Newton steps), thus representing the total cost per space–time

strip. The time history of PCG iterations is presented for 06 t6 175, by which time the periodic steady-

state is well established. The simulations (up to t ¼ 175) required the sequential solution of 350 space–time

strips. From Fig. 31 we see that the PCG iteration history closely follows the physics of the problem, in-

dicating an increase in computational cost as the vortex street starts to form and eventually reaching a
steady-state. In the periodic steady-state, mesh A requires approximately 11,000 (0:084Ndof ) PCG iterations

per space–time strip and mesh B 18,000 (0:087Ndof ) PCG iterations per space–time strip (using a Jacobi

preconditioner) to meet non-linear and PCG convergence criteria.

Fig. 32 shows the time histories of PCG iterations for space–time coupled simulations 4/4/3 Dt ¼ 0:25 in

meshes A and B. The reduction of Dt results in better matrix conditioning, thus leading to faster PCG
0
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Fig. 31. Time history of PCG iterations for space–time coupled simulations 4/4/3 Dt ¼ 0:50 in meshes A and B. Jacobi preconditioner
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convergence. However, the simulations (up to t ¼ 175) required the sequential solution of 700 space–time

strips, resulting in only slightly lower total CPU solve times when compared to the cases 4/4/3 Dt ¼ 0:50.
The computed characteristic flow parameters for these simulations presented negligible differences (as much
as 0.01%) with those reported previously for the case 4/4/3 Dt ¼ 0:50 using mesh A.

Fig. 33 shows the time histories of PCG iterations for space–time coupled simulation 4/4/2 Dt ¼ 0:10 and
space–time decoupled simulations 4/4/GAM qh

1 ¼ 0:50 and 4/4/TR (equivalent to 4/4/GAM qh
1 ¼ 1:0) with

Dt ¼ 0:10 using mesh A. The simulations (up to t ¼ 175) require the sequential solution of 1750 space–time

strips/time steps. From Fig. 33 we see that the space–time coupled formulation has better matrix
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conditioning than the decoupled formulations, resulting in faster PCG convergence. However, the space–

time decoupled simulations require less work per PCG iteration, having only 32,864 dof compared to

98,592 dof for the space–time coupled simulation, thus resulting in approximately equal CPU solve times.

To give the reader a feeling of the algorithmic performance achieved by the formulation in actual imple-

mentations, we report the solution time of the space–time coupled simulation 4/4/2 Dt ¼ 0:10 as 4.5 wall-

clock hours using 8 processors (R14K at 500 MHz) in a SGI Origin 3800.

The PCG iteration history for the space–time decoupled simulations displays a more pronounced os-

cillatory behavior than that observed for the space–time coupled simulations. In addition, we observe that
time



J.P. Pontaza, J.N. Reddy / Journal of Computational Physics 197 (2004) 418–459 457
the trapezoidal rule (TR) simulation results in a higher computational cost when compared to the GAM

[28–30] simulation with a high frequency damping parameter of qh
1 ¼ 0:50. Fig. 34 shows the time history

of the L2 least-squares functional for these simulations. In the periodic steady-state the value of the L2 least-
squares functional for the space–time coupled formulation is approximately two orders of magnitude lower

than that for the decoupled formulation. The cost-accuracy metrics indicate that the space–time coupled

formulation is the optimal choice.

Remark. The two-dimensional flow past a circular cylinder can be categorized as an external flow

problem, where the cylinder is immersed in an unbounded fluid. Sufficiently far away upstream of the

cylinder, the flow field is uniform with p ¼ p1. In addition, sufficiently far away downstream of the
cylinder the pressure field is essentially uniform (except for small variations in the wake region) with

p ¼ p1. The simulations were also carried out by specifying the consistent boundary condition p ¼ p1 at

the inflow region. Without this additional consistent boundary condition, the space–time decoupled

simulation became unstable. The space–time coupled simulation did not display such sensitivity to the

boundary condition, however specifying the additional consistent boundary condition improved PCG

convergence.
5. Concluding remarks

In this paper we presented a space–time coupled least-squares finite element formulation for the non-

stationary advection-diffusion and incompressible Navier–Stokes equations. Formulations based on least-

squares principles offer many theoretical and computational advantages in the implementation of the

corresponding finite element model that are not present in the traditional weak form Galerkin finite element

model. Most notably, the use of least-squares principles leads to a variational unconstrained minimization

problem where stability conditions such as inf–sup conditions never arise. In addition, the finite element
model always yields a discrete system of equations with a SPD coefficient matrix, allowing the use of robust

and fast iterative methods for its solution.

High order nodal/modal expansions in both space and time were used to develop the finite element

models. A time-stepping procedure in which the solution is obtained for space–time strips in a sequential

manner was implemented. In each space–time strip the SPD coefficient matrix is solved in a fully coupled

manner (i.e., no splitting) using the conjugate gradient method with a Jacobi preconditioner in matrix-free

form.

The merits of the formulation were demonstrated through numerical examples. For the advection-
diffusion equation we considered the transport of a scalar field in a rotating flow field, where the pure

advection limit was tested. For the incompressible Navier–Stokes equations we presented results for

impulsively started lid-driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-

facing step, and flow around a circular cylinder. Introducing a basis in time domain allowed us to represent

the time evolution of the flow fields with arbitrary accuracy by hp refinements, hence stability of the time-

stepping procedure was not an issue and relatively large time steps were used in the numerical examples to

illustrate this property. The quality of the numerical solution was judged by the value of the L2 least-squares

functional, which was shown to decay exponentially fast as the expansion order of the element basis is
increased. The space–time coupled formulation showed superior predictive capabilities for flows demanding

high space–time resolution, exemplified here by the transient flow over a backward-facing step, and was

found to be computationally-cost competitive compared to space–time decoupled formulations for two-

dimensional unsteady problems. For three-dimensional unsteady problems (not considered in the present

study), a space–time coupled approach is currently prohibitively expensive and a decoupled approach must

be used.
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